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necessary by the efficient photooxidation of stilbene and bromo-
stilbene to phenanthrene or its derivative.31 

Solutions of stilbenes in MCH/IP or MCH/IH were dried and 
deoxygenated by the usual Na-K. alloy treatment.'3 Fluorescence 
spectra were measured at right angles to the exciting light, as de­
scribed previously.>3 The exciting light was isolated by a Bausch & 
Lomb 500-mm grating monocbromator from a 450-w Osram xenon 
lamp. No isomerization was observed during the recording of the 
fluorescence spectra. Fluorescence yields were determined by 
comparison with a solution of anthracene in ethanol, of absorb-
ance 0.15 at 315 m/j, serving as a standard with ^F = 0.27.3 z 

Photoisomerization quantum yields were measured and calcu­
lated by the method of Zimmerman, Chow, and Paick.12>33 Quan-

(32) C. A. Parker, Advan. Photochem., 2, 305 (1964). 
(33) G. Zimmerman, L. Chow, and U. Paick, / . Am. Chem, Soc, 80, 

3528 (1958). 

Analysis of the relaxation of transient electric bire-
f i fringence of protein solutions provides a conven­
ient method for study of protein structure if suitable 
expressions are available to relate the relaxation con­
stants inferred from the data to shape parameters of the 
individual particles. In an earlier paper2 (designated in 
the following as RI), we have obtained a general equa­
tion for the birefringence of an oriented suspension of 
particles in terms of the angular probability density of 
the particles. Introducing results of the theory of rota­
tional Brownian motion of Perrin,3 we used this equa­
tion to write the specific form for the decay in bire­
fringence of a suspension of asymmetric ellipsoidal par­
ticles in free rotation following initial orientation in 
terms of the optical and frictional properties of in­
dividual particles. The present investigation is an ex­
tension of the preceding work directed toward its gen­
eralization and application in estimation of particle 
shape. 

Numerous problems in application are apparent from 
the theoretical analysis. The question of the actual 
amount of information in a relaxation curve gives rise 

(1) Biomathematics Program, Institute of Statistics, North Carolina 
State University, Raleigh, N. C. 

(2) D. Ridgeway, J. Am. Chem. Soc, 88, 1104 (1966). 
(3) F. Perrin, / . Phys. Radium, [7] 5, 497 (1934); [7] 7, 1 (1936). 

turn yields with 313-m/u light in glycerol triacetate were corrected 
for the absorption of light by this solvent (D = 0.20, independent 
of temperature). The quantum yields of isomerization and of 
fluorescence are probably accurate to better than ±10%, except 
the isomerization quantum yields below 0.1, which are much less 
accurate. Emission and absorption spectra, especially at low 
temperatures, did not show any evidence of dimerization, associa­
tion, or aggregation of solute molecules, phase separation of com­
ponents of the solvent mixtures, or cloudiness due to humidity. 
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to many of these. In the absence of knowledge about 
the general form of the relaxation curve, i.e., for par­
ticles of arbitrary shape, uncertainty necessarily arises 
in connection with misinterpretations produced by as­
sumption of an incorrect particle-shape class for the 
analysis. The lack of utility of definition of an equiv­
alent-spheroid model in the study of protein structure 
has exemplified this problem in the past. The signifi­
cance of a simple exponential decay of birefringence, 
the form observed for some proteins, is of particular 
interest because of the known result that it can arise in 
an ellipsoidal model for the monodisperse axisymmetric 
spheroid. Moreover, one concludes from the analysis 
of suspensions of the asymmetric ellipsoid that the re­
laxation curve does not itself contain enough informa­
tion to specify uniquely the dimensions of an ellipsoid. 
The relaxation data therefore cannot be applied except 
in a confirmatory fashion to ellipsoids without deter­
mination of what additional observable parameters are 
required to obtain such specification. Finally, there are 
already described in the literature birefringence curves 
which do require the form of the relaxation equation de­
rived for the asymmetric ellipsoid (as opposed to the 
spheroid) if one assumes the suspensions under study to 
be monodisperse. It is of interest to evaluate an ex­
ample of such data in terms of the theory to establish 
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sum of two exponential terms, defining two relaxation constants. Apart from a physically unlikely class of ex­
ceptions, a relaxation curve consisting of a single exponential term is shown to occur only for an axisymmetric 
particle, and always in this case. For the asymmetric ellipsoid, combination of the relaxation constants with the 
particle volume is shown to lead to definition of two reduced relaxation constants which are functions only of the 
axial ratios of the particle. A procedure is presented for convenient estimation of particle dimensions from re­
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whether they are compatible with the asymmetric-ellip­
soid model. 

The present investigation consists of three sections. 
In the first, the form of the relaxation curve for suspen­
sions of a rigid particle of arbitrary shape is obtained, 
and the condition under which it reduces to a simple ex­
ponential is given. The second section continues analy­
sis of the asymmetric ellipsoid, the one class of com­
pletely asymmetric shape for which one can write the 
elements of the viscous drag tensor for the particle in 
terms of particle dimensions. A suitable procedure 
for estimation of axial lengths of asymmetric ellipsoids 
is presented, and values of derived relaxation times 
introduced in this procedure are tabulated for a wide 
range of axial lengths. Finally, in the third section, 
an example is given of application of the estimation pro­
cedure of section II to a particular protein, Helix po-
matia hemocyanin. 

I. Form of Birefringence Relaxation 
We discuss first the generality of the relaxation equa­

tion for birefringence given in RI. The problem treated 
is that of a suspension of identical dielectric particles 
subjected to an orienting uniform electric field for some 
length of time and then removed suddenly. The 
typical particle may possess a permanent dipole moment 
of arbitrary fixed orientation, as well as an induced mo­
ment due to polarization. Of the assumptions made, 
we mention in particular the condition of applicability 
of Rayleigh-Gans light-scattering theory to the system. 
In RI a general expression for the time-dependent bire­
fringence of an oriented suspension (eq RI22) is written 
in terms of the average values of functions of the angles 
formed by the instantaneous directions of axes fixed in 
the diffusing particles with their initial directions at the 
instant of removal of the field. The equation for re­
laxation of birefringence following sudden removal of 
the orienting field (eq RI23) is obtained from this ex­
pression by taking for the angular quantities results of 
theories of free-rotational Brownian motion (eq RI17). 
We give eq RI23 here for convenience of discussion 

r = ~ (A+e-m-1 + A-e~m-1) (1) 
2n, 

where T is the birefringence, N the number density of 
particles in suspension, and nt the index of refraction of 
the suspending medium; A + and A-are complicated 
expressions, not to be displayed here, which depend on 
the initial orientation of particles and their dielectric 
and diffusion properties. The decay constants 9+ 
and 0 - are given either by (RI 19) 

e± = si ± ((R2 - (P2)'''1 (2) 

in terms of the rotational diffusion constant R1 about 
the rth axis, with (RI 18) 

(R = ^2(R, (3) 

or by (RI 19') 

0 ± = 

~9 \w /L? c? ± V?c7^ " ?>?c7c/J J (4) 

in terms of the frictional couple C4 = (3r)v/4ir)Ct' en­
countered in the steady rotation of a particle at unit 
angular velocity about its /th axis (where rj is the vis­
cosity of the suspending medium, v the particle volume, 
and kT the thermal energy). 

These equations are derived in RI with reference to 
the asymmetric ellipsoidal particle. The required solu­
tion to the rotational diffusion equation and a theory of 
Brownian motion relating the (macroscopic) diffusion 
constants to the frictional properties of individual ellip­
soids and to the temperature were taken from Perrin.3 

It may be shown, however, that the equations apply 
directly to rigid particles of arbitrary shape. Those re­
sults which are taken from the Perrin theory for ellip­
soids are algebraically identical with the analogous ex­
pressions given by Favro4 in his general theory of rota­
tional Brownian motion. Two series of equations are 
involved. The first concerns the averages of the angu­
lar quantities described above which appear in eq RI22. 
The identity of results of the two theories in this case is 
that of eq RI17 (from Perrin) and Favro's equation 
F6.10. This assures the generality of eq 2 here. The 
second concerns the relation between the rotational 
diffusion constants and viscous drag constants of in­
dividual particles. Favro's eq F2.7 defines a rotational 
diffusion tensor for particles in terms of elementary 
rotations which arise in his stochastic treatment. It is 
evident from eq F2.7 that the tensor is symmetric, 
so that it may always be diagonalized to define three 
orthogonal particle axes and the principal diffusion 
constants for rotation about them. In the case of the 
ellipsoid, these would coincide with the geometric axes, 
and the diffusion constants would be the C4's employed 
by Perrin. The relation to elements of the viscous drag 
tensor is given in eq F7.10, which, for the diagonalized 
tensor, reduces to <Rt = kTjCt. This is precisely the re­
lation employed in going from eq 2 to 4 here. Equa­
tion 4 therefore applies, as does eq 2, without modifica­
tion to rigid particles of arbitrary shape. 

We find then that at most two relaxation constants 
may be observed for the relaxation curve of any mono-
disperse suspension (of rigid particles). Conversely, 
we conclude that it is not possible to infer the shape class 
of the suspended particle from the relaxation curve. 

Let us now inquire into the origin of a simply ex­
ponential relaxation curve. It was pointed out in sec­
tion IV of RI that the coefficient A-, that of the more 
slowly decaying exponential in eq 1, vanishes iden­
tically in the case of the spheroid possessing optical as 
well as geometric symmetry about its axis. Since the 
expressions for the A±s are unchanged in going from 
the spheroid to the axisymmetric particle of arbitrary 
shape class, the same result obtains for the latter as well. 
Thus, axial symmetry is a sufficient condition for simply 
exponential relaxation behavior. We may demon­
strate, however, that it is not a necessary condition, 
although the exception is probably rare. The singly 
exponential curve can arise either through the vanishing 
of one of the coefficients A± or through the equality 
8+ = 9— We investigate each of these possibilities 
in turn. 

Consider first the vanishing of A+ or A-, a situation 
which arises at least in the case of the spheroid, as has 
been pointed out. The expressions (RI24) for A± con-

(4) L. D. Favro, Phys. Rev., 119, 53 (1960). 
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sist of sums of three terms, each weighted by a dif­
ference, (%-2 — Q1/), of direction cosines mentioned 
earlier which describe the initial positions of the par­
ticle axes of each particle relative to directions fixed in 
space. If the initial orientation of the particles is to be 
kept arbitrary in the treatment of the relaxation phenom­
ena, it is required that the terms weighted by each of 
these differences vanish identically for the relaxation 
coefficient A+ or A- itself to vanish. This leads to 
three conditions 

Ia1(I =F G1) - a2(l ± 2G3) - az(l ± 2G2) = 0 
-O1(I ± 2G3) + 2a2(l T G2) - a3(l ± 2Gx) = O 

- a i ( l ± 2G2) - a2(l ± 2G1) + 2a,(l T G3) = O (5) 

where (RI 18) 

G, (R i - (R 
2((R2 - (P2)'7 (6) 

Equations 5 are formally three simultaneous equations 
for three unknowns, i.e., the o;,'s. The associated 
matrix is found, upon introduction of (6) into (5) and 
observation that the G/s are of mean zero and mean-
square 1Ji, to be singular and of order one (that is, the 
complementary minor of each element is singular, 
whereas the elements themselves are in general non­
zero). The row space of the matrix is therefore of di­
mension one, so that the three equations in (5) are in 
fact equivalent, and any solution to one of the three is a 
solution to the other two as well. It follows that any 
particle for which the principal polarizabilities a^ and 
the G4, derivable from its principal frictional constants, 
are related in a way which satisfies one of the equations 
in (5) leads to a vanishing of one (or both) of the coef­
ficients A± and to a one-term exponential relaxation 
curve (or to zero birefringence). We mention a par­
ticular solution required from physical considerations, 
that of the completely isotropic case, in which the three 
o!,'s are equal, for which the distinction between upper 
and lower signs is lost and both coefficients vanish 
simultaneously. 

The only other way in which a simply exponential 
relaxation curve could arise from eq 1 is that in which the 
two relaxation constants G+ and G- are equal. It is 
evident from eq 4 that this equality arises if and only if 

'C1'' \>3 W ^ ; 
(7) 

Since this is true only in the completely degenerate case, 
Ci — C2 = C3 (i.e., for the sphere), condition 7 is never 
fulfilled by an ellipsoid and cannot lead to G+ = G-. 

Let us summarize the additional information pro­
vided by a one-term exponential relaxation curve. 
First, this relaxation behavior always implies that the 
optical and frictional properties of the suspended par­
ticle are related in a way which satisfies one of the three 
equivalent equations in (5). Since these properties are 
related in an asymmetric particle only in a very weak 
fashion, through their common dependence on the 
axial ratios, the coincidental agreement with (5) in the 
asymmetric case must be very unlikely. In contrast, 
the degenerate case in which the particle possesses 
optical and geometric rotational symmetry about one of 
its axes always satisfies eq 5 for the lower sign to lead to 
a zero A- in the relaxation equations. The singly ex­

ponential relaxation curve thus provides strong evi­
dence that the suspended particle is axisymmetric, al­
though a class of exceptions does exist. 

II. Ellipsoidal Dimensions 

Equation 4 relates the observable relaxation constants 
to the shapes of individual suspended particles directly. 
However, it is useful in determining particle shape only 
if expressions are available for the viscous drag con­
stants Ct in terms of particle dimensions for the shape 
class of the particle. The most general shape class for 
which the Ct's are known is that of the asymmetric 
ellipsoid. Since proteins are frequently represented as 
ellipsoids, it is worthwhile to develop a method of inter­
preting measured relaxation constants in terms of this 
shape class. This is the purpose of the present sec­
tion. 

Evaluation of relaxation constants presents two prob­
lems. First, the Q±'s do not themselves contain enough 
information to permit estimation of shape, as was 
pointed out in RI. We must, therefore, determine what 
additional knowledge about the particle is necessary to 
specify its dimensions uniquely. The second problem is 
associated with the nature of the decay constants them­
selves. It is physically evident that the relaxation prop­
erties of the ellipsoid must depend on its actual dimen­
sions and not simply on its axial ratios. However, it is 
found that the expressions for the decay constants of the 
ellipsoid cannot be written in closed form except in the 
degenerate case of the spheroid, so that it is desirable to 
tabulate their computed values once and for all. Un­
less one defines a quantity independent of particle size 
scale from which the values of the decay constants can be 
inferred, given the additional knowledge about the par­
ticle selected in connection with the first problem here, 
it is necessary to retabulate the values of the decay con­
stants for each new size scale. It is found that these 
problems are closely related and may be removed simul­
taneously. 

We select the particle volume as an additional param­
eter of the particle because methods of its determination 
are open to less question than are those for any other 
measure of size scale. We then combine the volume 
with the particle frictional constants to derive a dimen-
sionless decay parameter of the type described. For 
the asymmetric ellipsoid, the derived frictional constants 
C / (in eq 4) may be obtained directly from the ex­
pression for the principal frictional couples given by 
Edwardes5 

C/ = 
167T a/"- + ak' (8) 
3 a/ 2P' + a*'V*' 

where i, j , and k are all different, a/ = atjaz, at being 
the length of the z'th semiaxis (we shall refer to the ai as 
the ratio lengths in the following) and, for definiteness, 
O1 > a-i > a3, and where 

> = 3^ f -
' 4TTJO (at 

dX 

+ X)* 
(9) 

with K2 = (ai2 + X) (ai1 + X) (a3
2 + X) and v being the 

particle volume as before. Suitable expressions for 
computation of the elliptic integrals here are given in RI 
from Osborn.6 Since the Pi's, and therefore the C/ 's , 

(5) D. Edwardes, Quart. J. Math., 26, 70 (1893). 
(6) J. A. Osborn, Phys. Rev., 67, 351 (1945). 
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Table I. Tabulation of 1006±"d = 100 (r)v/kT)e± for Paired Values of Ratio Lengths Oi and a2 of Rigid Ellipsoids" 

1 
2 
3 
4 
6 
8 
10 
15 
25 
50 
100 

1 

16. 746 
11.101 
7.1496 
4.9336 
2.7668 
1.7851 
1.2558 
0.64951 
0.27519 
0.082814 
0.024205 

2 

17.467 
13.569 
9.7074 
7.1977 
4.3374 
2.8992 
2.0830 
1.1087 
0.48158 
0.14826 
0.037832 

3 

17.227 
14.912 
11.411 
8.0550 
5.2255 
3.6301 
2.6692 
1.4644 
0.65191 
0.20489 
0.061657 

4 

17.045 
13.996 
10.857 
9.0652 
5.6688 
4.0878 
3.0780 
1.7434 
0.79580 
0.25510 
0.077704 

6 

16.856 
13.717 
10.567 
8.5163 
6.3149 
4.4878 
3.5294 
2.1311 
1.0249 
0.34159 
0.10638 

8 

16.672 
13.569 
10.380 
8.3294 
5.9890 
4.8134 
3.6833 
2.3552 
1.1944 
0.41417 
0.13169 

10 

16.744 
13.488 
10.265 
8.1985 
5.8710 
4.6025 
3.8804 
2.4712 
1.3182 
0.47600 
0.15442 

15 

16.702 
13.397 
10.125 
8.0246 
5.6744 
4.4273 
3.6532 
2.5161 
1.4884 
0.59464 
0.20295 

25 

16.680 
13.346 
10.041 
7.9106 
5.5182 
4.2520 
3.4789 
2.4340 
1.5706 
0.72595 
0.27484 

50 

16.669 
13.223 
10.001 
7.8552 
5.4337 
4.1441 
3.3535 
2.2900 
1.4405 
0.78362 
0.36652 

100 

16.657 
11.652 
9.9911 
7.8403 
5.4099 
4.1119 
3.3136 
2.2339 
1.3662 
0.72285 
0.39255 

" Above the diagonal, elements c;; = 100G+red for ellipsoids of axial ratios/:;': 1. Below the diagonal, Ci1 = 1009_red for ellipsoids of axial 
ratios i:j:\. Additional explanation is given in the text. 

are dimensionless and as such independent of the par­
ticle size scale, the same is true of the quantity inside the 
square brackets on the right side of eq 4. We satisfy 
the above considerations, then, by defining a reduced 
decay constant 

9 -' - (ifh (10) 

It depends entirely on experimentally determined quan­
tities and requires knowledge only of the solution condi­
tions 7] and T and of the parameters we wish to com­
bine, i.e., the decay constants G± and the volume v. 
It is seen from eq 4 that the reduced decay constants are 
dimensionless and therefore in properly normalized 
form for computation and tabulation. We shall find 
that the reduced decay constants in eq 10 do specify the 
particle dimensions uniquely, at least in the completely 
asymmetric case, so that they do remove the two prob­
lems discussed. 

Computed values of G±
red over a wide range of ratio 

lengths are compiled in Table I. In order to conserve 
space, we have brought values for both relaxation con­
stants together in a single table, the value of G+red 

being given above the diagonal and those of G-red be­
low the diagonal. The diagonal terms are printed in 
italics to facilitate separation of the table. The ele­
ments O1J of row 1 in the table are the values for prolate 
spheroids of axial ratio j , and the diagonal elements a}} 

are the values for oblate spheroids of axial ratio \jj. 
The method of analysis of birefringence and volume 

data employing such tabulated values is best described 
in terms of its geometric significance. Let us con­
sider the three-dimensional plot of the reduced decay 
constant G+red against the ratio lengths a\ and a2' 
(we recall that a3' = 1 for all ellipsoids). The function 
G+red (GI', a2') is a surface in this space, onto which any 
given ellipsoid may be mapped as a point. The pro­
jection onto the a\'a% plane of the intersection of this 
surface and the plane G+red = constant is the locus of 
points (fi\, ai') compatible with that value of G+red. 
An analogous projection exists for a given value of 
Q_re<j J j 1 6 intersections of these two projected curves 
in the a\'a%' plane correspond to the only paired values 
of ratio lengths simultaneously compatible with the as­
sumed values of the reduced relaxation constants. Two 
sets of plots are required, the permanent one of the 
values in Table I and the individual plot of projections 
corresponding to a particular protein. For the per­
manent plots, it is apparent from perspective drawings 
of the three-dimensional surfaces that G+red should be 

presented as a family of curves of G+red against a2' for 
constant values of ai', and G-red as a family of curves of 
6- r e d against a\ for constant values of a2'. For a 
particular relaxation curve, then, paired points (oi', 
O2') corresponding to intersections of each of the mem­
bers of these families in the permanent plots with the 
appropriate values of G+red and G-red are obtained by 
inspection from the permanent plots. (The decision 
to present the computational results here by means of 
Table I rather than in graphical form is based on the 
greater precision provided by the tabulated values.) We 
note, finally, that the proper scale factor for a given 
ellipsoid for conversion from ratio lengths to physical 
lengths is provided by the relation a3

3 = 3t>/47rai'a2', 
where a3 is, again, the shortest semiaxial length in the 
same system of units as the volume. 

In working with this graphical method, we have not 
found a situation in which the projected curves inter­
sected in more than one point for an asymmetric ellip­
soid. Except in cases in which there are multiple inter­
sections, determination of the axial lengths is, of course, 
unique. 

III. Application 

It is useful to illustrate the methods described here by 
application to a specific set of data. We select for dis­
cussion the hemocyanin of the snail, Helix pomatia, be­
cause of the availability of data on it. It is to be em­
phasized, however, that there is no reason to reject the 
original interpretation of Pytkowicz and O'Konski7 of 
their relaxation data as reflecting the presence of ag­
gregated material found in freshly prepared solutions 
which disappears upon long standing. 

In the pH 4.6-7.4 region, hemocyanin, the copper-
carrying respiratory pigment of mollusks and other 
lower invertebrates, has been shown from its sedimenta­
tion behavior to exist as a single species. Outside this 
pH range to either the acid or alkaline side, or at high 
ionic strengths, the protein dissociates in a manner 
which suggests that the molecule at neutral pH is an ag­
gregate of several subunits. These observations are 
confirmed by electron micrographs.8 

Pytkowicz and O'Konski have studied the relaxation 
of electric birefringence of snail hemocyanin at neutral 
pH following sudden removal of the external field. They 
found that the relaxation curve can be fitted very well 

(7) R. M. Pytkowicz, and C. T. O'Konski, Biochem. Biophys. Acta, 
36,466(1959). 

(8) E. F. J. Van Bruggen, E. H. Wiebenga, and M. Gruber, J. MoI. 
Biol., 4, 1 (1962). 
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Figure 1. Plots of ratio lengths compatible with values of the 
reduced decay constants e+

red = 0.0668 and e-">d = 0.01443 as 
estimated by the method described in the text and data in Table I. 

with a relation of the form of eq 1. A mixed decay 
curve such as this is characteristic of three types of sus­
pensions of rigid ellipsoids.9 These are, respectively, 
mixed suspensions of two different kinds of spheroids, a 
suspension of a single kind of spheroid consisting of a 
material which in bulk is itself anisotropic, and a mono-
disperse suspension of an asymmetric ellipsoid. Al­
though the ratio of the two relaxation times is predict­
able for the second case, so that one might demonstrate 
it as such, the first and third cases cannot be distin­
guished from the observed relaxation times alone. Pyt-
kowicz and O'Konski interpreted the two relaxation 
times in terms of a mixed suspension of a circular cyl­
inder and its end-to-end dimer. Let us, in contrast, 
assume a monodisperse suspension and determine the 
axial lengths of an asymmetric ellipsoid of the volume of 

(9) D. Ridgeway, Virginia J. Sci., 17, 194 (1966). 

the undissociated hemocyanin molecule which would 
lead to the observed relaxation times. 

In estimating the dimensions of the molecule, we shall 
take the molecular weight of the dry protein to be 8.9 X 
106 (from sedimentation velocity)10 the partial specific 
volume in water 0.738,10 the hydration 0.5 g of water/ 
g of dry protein (a typical value), and the birefringence 
decay constants8 9+ = 15 X 103 and 9 - = 3.2 X 
103 sec-1. If the density of water of hydration is as­
sumed to be that of pure water, then at 25° the hydrated 
volume of the protein, as inferred from partial specific 
volume data, is 2.75 X 10~17 cm3, and the reduced de­
cay constants are 9+red = 0.0668 and 9- r e d = 0.01443, 
respectively. The projected a^-locus plots described 
in section II for these values are shown in Figure 1. 

The intersection of the two curves corresponds to the 
ratio lengths 1 X 4.89 X 18.5. The axial lengths of an 
ellipsoid of the assumed volume with these ratio lengths 
are 83.4 X 408.3 X 1540 A. If the assumption is made 
that the hydration layer is of the uniform thickness d 
over the surface of the anhydrous molecule, then the 
value of d may be estimated from the equation 

~(a - d)(b - d)(c - d) = Danh (11) 

where t>anh is the volume of the anhydrous protein mole­
cule. Substituting the estimated values of the hydrated 
molecule for a, b, and c, and 1.091 X 10-17 cm3 for 
tfanh) o n e u n ds that d = 22.5 A. The dimensions of the 
anhydrous molecule are thus 38.4 X 363.4 X 1495 A. 
A monodisperse suspension of a ribbon-shaped mole­
cule of these dimensions would produce the birefring­
ence relaxation curve observed by Pytkowicz and 
O'Konski. 
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